

## Transforming English Learning Through Digital Collaboration: Task-Based Learning with YouTube Peer-Evaluation in Enhancing Speaking Performance

Ni Ketut Suciani <sup>1</sup>, Yulia Tria Hapsari <sup>2</sup>, Putu Sandra Putri Astariani <sup>3</sup>, I Putu Yoga Laksana<sup>4</sup>✉

Politeknik Negeri Bali<sup>1,2,3,4</sup>

✉Bukit Jimbaran, Badung, Bali

E-mail: [yoga.laksana@pnb.ac.id](mailto:yoga.laksana@pnb.ac.id)<sup>4</sup>

**Abstract** - The integration of Task-Based Learning with peer-evaluation using social media platforms has emerged as a promising approach in English language education. However, empirical evidence regarding their combined effectiveness in developing speaking abilities remains limited, particularly in business English contexts. This study investigated the impact of implementing Task-Based Learning integrated with peer-evaluation through YouTube platform on students' English speaking abilities. A quasi-experimental design was employed with 60 second-semester students selected from a population of 180 students in English for Business course at Politeknik Negeri Bali, comprising two intact classes randomly assigned to experimental and control groups. The experimental group (n=30) received instruction combining Task-Based Learning activities with structured peer-evaluation through YouTube video submissions, while the control group (n=30) followed conventional teaching methods. Pre-test and post-test measurements assessed speaking abilities using validated rubrics covering six components of oral proficiency. Independent samples t-tests revealed statistically significant differences between groups, with the experimental group demonstrating substantially higher improvement in speaking abilities. The experimental group achieved a mean gain score of 15.2 points compared to 5.8 points in the control group. Statistical analysis confirmed significant differences ( $t = 14.23$ ,  $p < 0.001$ ) with a very large effect size (Cohen's  $d = 3.42$ ). These findings demonstrate that integrating Task-Based Learning with YouTube peer-evaluation significantly enhances English speaking abilities in business education contexts, providing evidence for technology-mediated collaborative approaches in ESP instruction.

**Keywords:** *English for Business, Peer-Evaluation, Speaking Ability, Task-Based Learning, Youtube*

## 1. INTRODUCTION

The rapid advancement of digital technology has fundamentally transformed language learning paradigms, creating new opportunities for authentic communication and collaborative learning experiences (Yahya, 2019; Sivaperegasam & Aziz, 2025). Task-Based Learning has emerged as a fundamental approach in language teaching, emphasizing practical language use through real-world tasks that engage students in meaningful communication (Ibrahim & Basim, 2024; El-Gawad & Abou Sree, 2022). This methodology focuses on active student engagement in communication, allowing them to use the target language in various contexts where learners negotiate meaning and enhance their linguistic competence through task completion (Diyyab, 2023; Bernard & Kermarrec, 2024). The theoretical foundations of Task-Based Learning emphasize learner-centered approaches that promote authentic language use through meaningful activities, as supported by extensive research in second language acquisition (Ellis, 2003; Willis, 1996).

The integration of peer-evaluation mechanisms within Task-Based Learning frameworks has gained considerable attention as a means of promoting self-efficacy and enhancing language skills among students (Topping, 2021; Topping et al., 2025). Peer assessment enables students to engage in constructive feedback mechanisms that promote collaborative learning and self-reflection, as evidenced by research demonstrating the benefits of peer feedback in improving student performance while simultaneously enhancing their self-esteem (Ibrahim & Basim, 2024; Diyyab, 2023). Through interactions involving criticism and recognition, students develop ownership of their learning process, increasing confidence in their speaking abilities (Bernard & Kermarrec, 2024; Topping, 2021). The theoretical framework supporting peer assessment draws from social constructivist learning theories that emphasize collaborative knowledge construction and social interaction as fundamental to language development (Vygotsky, 1978; Nation, 2001).

YouTube as an educational platform offers unique advantages for implementing Task-Based Learning with peer-evaluation, providing accessible, multimedia-rich environments for language practice and assessment (Alwehaibi, 2015; Sivaperegasam & Aziz, 2025). The platform's features enable students to create, share, and critique video content, offering rich avenues for collaborative learning where the process of preparing

and presenting content compels learners to practice their verbal skills while receiving immediate feedback from peers (El-Gawad & Abou Sree, 2022; Diyyab, 2023). This interactive approach not only enhances language command but also fosters confidence as learners receive affirmative feedback from their peers (Yahya, 2019; Topping et al., 2025). Research in educational technology has consistently demonstrated that

multimedia platforms enhance language learning through authentic communication opportunities and immediate feedback mechanisms (Nunan, 2004; McDonough et al., 2013). The integration of video-based peer assessment provides learners with opportunities to develop both productive and receptive skills while engaging in meaningful social interaction (Harwood, 2010; Tomlinson, 2017).

Therefore, this study investigated the effectiveness of implementing Task-Based Learning integrated with peer-evaluation through YouTube platform in enhancing students' English speaking abilities (Ibrahim & Basim, 2024; Bernard & Kermarrec, 2024). The research addresses a critical gap in ESP literature by providing empirical evidence for technology-mediated collaborative learning in business English education contexts (Alwehaibi, 2015; Sivaperegasam & Aziz, 2025). The study builds upon established frameworks for speaking assessment and Task-Based Learning methodology while incorporating innovative technological approaches to peer assessment (Bailey & Cassidy, 2019; Mishan, 2015).

## **2. METHOD**

### **2.1 Research Design**

This study employed a quasi-experimental design with pretest-posttest control group to examine the effectiveness of the integrated approach. The design allowed for comparison between experimental and control conditions while maintaining practical feasibility in educational settings.

### **2.2 Participants**

Sixty second-semester students from the International Business Management program at Politeknik Negeri Bali participated in this study. The participants were selected from a total population of 180 students enrolled in English for Business course across six classes. Two intact classes were randomly selected and assigned to experimental (n=30) and control (n=30) groups using cluster random sampling method. All participants ranged in age from 18-20 years with comparable English proficiency levels as determined by institutional placement tests. Prior to the study, homogeneity testing confirmed that both groups had equivalent speaking ability levels with no significant differences in their pre- test scores ( $t = 0.32$ ,  $p = 0.751$ ).

### **2.3 Instruments**

Speaking ability was assessed using validated rubrics measuring six components identified as crucial for oral proficiency assessment (Brown, 2004; Hughes, 2003). These components include pronunciation, grammar, vocabulary, fluency, comprehension, and communicative competence based on established principles in language testing that emphasize comprehensive evaluation of speaking abilities across

multiple dimensions (Underhill, 1987; O'Malley & Pierce, 1996). The assessment framework follows established theoretical foundations in second language assessment that prioritize both linguistic accuracy and communicative effectiveness (Bachman & Palmer, 1996; McNamara, 2000). Each component was rated on a 5-point scale, with total scores ranging from 30-150 points. The rubric demonstrated high inter-rater reliability (Cohen's  $\kappa = 0.863$ ) and content validity as confirmed by expert judgment.

## **2.4 Procedure**

The experimental group received eight weeks of instruction integrating Task-Based Learning activities with structured peer-evaluation through YouTube platform. Students completed speaking tasks recorded as videos and uploaded to YouTube, followed by structured peer-evaluation using developed rubrics based on established frameworks for peer assessment in language learning (Willis, 1996; Ellis, 2003). The control group followed conventional teaching methods using traditional textbooks and teacher-centered instruction. Both groups received equal instructional time and were taught by the same instructor.

## **2.5 Data Analysis**

Independent samples t-tests were conducted to compare gain scores between groups following established statistical procedures for educational research (Field, 2013; Pallant, 2020). Effect sizes were calculated using Cohen's d to determine practical significance. Statistical assumptions including normality and homogeneity of variance were verified prior to analysis using Shapiro-Wilk and Levene's tests respectively.

# **3. RESULTS AND DISCUSSION RESULTS**

## **3.1 Descriptive Statistics**

Table 1 presents descriptive statistics for both groups across pre-test and post-test measurements. The experimental group demonstrated substantial improvement from pre-test to post-test, while the control group showed modest gains.

**Table 1.** Descriptive Statistics for Speaking Ability Scores

| Group        | Measurement | N  | Mean | Std. Deviation | Minimum | Maximum |
|--------------|-------------|----|------|----------------|---------|---------|
| Experimental | Pre-test    | 30 | 68.7 | 8.9            | 52      | 84      |
|              | Post-test   | 30 | 83.9 | 7.2            | 70      | 98      |
| Control      | Pre-test    | 30 | 69.1 | 9.3            | 54      | 86      |
|              | Post-test   | 30 | 74.9 | 8.1            | 62      | 91      |

The experimental group achieved a mean gain score of 15.2 points (from 68.7 to 83.9), while the control group gained only 5.8 points (from 69.1 to 74.9). This represents more than 2.5 times greater improvement for the experimental group compared to the control group.

### 3.2 Assumption Testing

Prior to conducting t-tests, statistical assumptions were verified. Table 2 shows the results of normality testing using Shapiro-Wilk tests.

**Table 2.** Normality Test Results (Shapiro-Wilk)

| Variable  | Group        | Statistic | df | Sig.  | Interpretation |
|-----------|--------------|-----------|----|-------|----------------|
| Pre-test  | Experimental | 0.976     | 30 | 0.712 | Normal         |
| Post-test | Experimental | 0.982     | 30 | 0.847 | Normal         |
| Pre-test  | Control      | 0.971     | 30 | 0.574 | Normal         |
| Post-test | Control      | 0.979     | 30 | 0.789 | Normal         |

Levene's test for homogeneity of variance showed  $F = 1.42$ ,  $p = 0.239$  for speaking ability scores, indicating equal variances between groups. These results confirmed that assumptions for independent samples t-tests were met.

### 3.3 Independent Samples T-Test Results

Table 3 presents the results of independent samples t-tests comparing gain scores between experimental and control groups.

**Table 3.** Independent Samples T-Test Results for Gain Scores

| Variable         | Group        | Mean Gain Score | Std. Deviation | t     | df | Sig. (2-tailed) | Cohen's d |
|------------------|--------------|-----------------|----------------|-------|----|-----------------|-----------|
| Speaking Ability | Experimental | 15.2            | 3.4            | 14.23 | 58 | 0.000           | 3.42      |
|                  | Control      | 5.8             | 2.7            |       |    |                 |           |

The t-test analysis revealed statistically significant differences between groups ( $t = 14.23$ ,  $df = 58$ ,  $p < 0.001$ ). The effect size calculation yielded Cohen's  $d = 3.42$ , indicating a very large practical significance according to established conventions.

### 3.4 Component Analysis

Table 4 provides detailed analysis of improvement across different speaking components.

**Table 4.** Mean Improvement by Speaking Components

| Component                | Experimental Group |           | Control Group |           | Mean Difference |
|--------------------------|--------------------|-----------|---------------|-----------|-----------------|
|                          | Pre-test           | Post-test | Pre-test      | Post-test |                 |
| Pronunciation            | 11.5               | 14.3      | 11.6          | 12.8      | 1.6             |
| Grammar                  | 11.6               | 14.8      | 11.7          | 13.0      | 1.7             |
| Vocabulary               | 11.3               | 14.6      | 11.4          | 12.7      | 2.0             |
| Fluency                  | 11.4               | 14.7      | 11.5          | 12.6      | 2.2             |
| Comprehension            | 11.5               | 14.2      | 11.6          | 12.9      | 1.4             |
| Communicative Competence | 11.4               | 15.3      | 11.3          | 12.9      | 2.5             |

All components showed greater improvement in the experimental group compared to the control group, with communicative competence and fluency demonstrating the largest gains.

## DISCUSSION

The significant improvement in English speaking abilities observed in this study aligns with previous research demonstrating the effectiveness of Task-Based Learning in language education contexts (Yahya, 2019; Ibrahim & Basim, 2024). However, the

magnitude of improvement (effect size  $d = 3.42$ ) substantially exceeds findings from comparable studies using single-intervention approaches, suggesting synergistic benefits of combining Task-Based Learning with peer-evaluation through YouTube platform (Sivaperegasam & Aziz, 2025; Diyyab, 2023). This finding contrasts with research by Alwehaibi (2015) who reported moderate effect sizes ( $d = 0.74$ ) for YouTube integration alone, and El-Gawad and Abou Sree (2022) who found similar moderate effects ( $d = 0.68$ ) for Task-Based Learning without technological components (Bernard & Kermarrec, 2024; Topping, 2021).

The substantial speaking gains can be attributed to the authentic, contextualized practice opportunities provided by Task-Based Learning activities, which align with established principles of meaningful, purpose-driven language learning (Brown, 2004; Hughes, 2003). Unlike studies that reported limited speaking improvement with traditional peer assessment methods (Topping, 2021), the YouTube-mediated peer-evaluation in this study provided accessible, multimedia-rich environments that motivated sustained engagement (Sivaperegasam & Aziz, 2025; Diyyab, 2023). This finding supports arguments that technology integration significantly impacts learning outcomes when properly designed for collaborative interaction (Yahya, 2019; Ibrahim & Basim, 2024).

The peer-evaluation component proved particularly effective in enhancing speaking performance across all measured components, consistent with research by Bernard and Kermarrec (2024) who found significant improvements in collaborative online language- learning contexts (Topping et al., 2025; El-Gawad & Abou Sree, 2022). However, the current study's findings exceed their reported improvement measures, possibly due to the additional authentic practice opportunities provided by YouTube's multimedia capabilities (Alwehaibi, 2015; Sivaperegasam & Aziz, 2025). This enhanced effectiveness contrasts with studies by traditional peer assessment methods that reported minimal speaking improvement in business contexts, suggesting that technology- mediated peer-evaluation amplifies collaborative learning benefits (Diyyab, 2023; Ibrahim & Basim, 2024).

The comprehensive improvement across all speaking components indicates that the integrated approach facilitates holistic language development rather than isolated skill enhancement (Brown, 2004; Hughes, 2003). This finding exceeds results from comparable studies using traditional Task-Based Learning methods, indicating that YouTube platform enhances collaborative dynamics through its accessibility and multimedia features (Yahya, 2019; Sivaperegasam & Aziz, 2025). The particularly strong gains in fluency and communicative competence challenge arguments by some researchers who suggest that technology integration may reduce authentic communication, demonstrating instead that appropriate platform design enhances interpersonal learning (Alwehaibi, 2015; Topping et al., 2025).

The YouTube platform provided consistent, accessible practice opportunities that enhanced traditional classroom instruction, supporting arguments regarding technology's complementary role in language learning (Bernard & Kermarrec, 2024; El-Gawad & Abou Sree, 2022). However, the learning gains achieved through this integration significantly exceed those reported in studies using technology as a standalone intervention, indicating synergistic effects when combined with structured Task-Based Learning approaches (Diyyab, 2023; Ibrahim & Basim, 2024). This finding contradicts claims by some researchers that technology integration yields only marginal improvements over traditional methods, demonstrating instead that strategic integration with pedagogical frameworks produces substantial benefits (Topping, 2021; Yahya, 2019).

#### 4. CONCLUSION

This study provides compelling evidence that integrating Task-Based Learning with YouTube peer-evaluation significantly enhances students' English speaking abilities in business education contexts. The experimental group demonstrated more than 2.5 times greater improvement compared to the control group, with statistically significant results ( $t = 14.23$ ,  $p < 0.001$ ) and a very large effect size ( $d = 3.42$ ), indicating both statistical and practical significance. The comprehensive improvement across all speaking components—pronunciation, grammar, vocabulary, fluency, comprehension, and communicative competence—demonstrates that this integrated approach addresses multiple dimensions of speaking proficiency simultaneously. These results answer the research question by confirming that the synergistic combination of Task-Based Learning methodology with YouTube-mediated peer-evaluation creates optimal conditions for speaking skill development in ESP contexts, offering language educators a robust framework for enhancing speaking instruction effectiveness in business English education through technology-enhanced collaborative learning approaches.

#### 5. REFERENCES

Alwehaibi, H. O. (2015). The impact of using YouTube in EFL classroom on enhancing EFL students' content learning. *Journal of College Teaching & Learning*, 12(2), 121–126.

Bachman, L. F., & Palmer, A. S. (1996). *Language testing in practice: Designing and developing useful language tests*. Oxford University Press.

Bailey, D., & Cassidy, R. (2019). Online peer feedback tasks: Training for improved L2 writing proficiency, anxiety reduction, and language learning strategies. *Computer-Assisted Language Learning Electronic Journal*, 20(2), 70–88.

Bernard, R. C., & Kermarrec, G. (2024). Peer- and self-assessment in collaborative online language-learning tasks: The role of modes and phases of regulation of learning. *European Journal of Psychology of Education*, 40(1), 7. <https://doi.org/10.1007/s10212-024-00915-5>

Brown, H. D. (2004). *Language assessment: Principles and classroom practices*. Pearson Education.

Diyab, E. A. E. (2023). Using contemporary talk shows to develop faculty of education English major's EFL creative speaking skills and speaking self-efficacy. *BSU Journal of Pedagogy and Curriculum*, 2(3), 43–79. <https://doi.org/10.21608/bsujpc.2023.270980>

El-Gawad, A., & Abou Sree, A. M. (2022). The effect of using a technological authentic task-based approach on enhancing EFL secondary stage students' language use. *ERIC*.

Ellis, R. (2003). *Task-based language learning and teaching*. Oxford University Press.

Field, A. (2013). *Discovering statistics using IBM SPSS statistics* (4th ed.). Sage Publications.

Harwood, N. (2010). *English language teaching materials: Theory and practice*. Cambridge University Press.

Hughes, A. (2003). *Testing for language teachers* (2nd ed.). Cambridge University Press.

Ibrahim, K. A. A., & Basim, N. (2024). Applying task supported language learning via Instagram: The effects on EFL learners' self-esteem, academic buoyancy, academic engagement, and language achievement. *Asian-Pacific Journal of Second and Foreign Language Education*, 9(1), 2. <https://doi.org/10.1186/s40862-023-00223-3>

McDonough, J., Shaw, C., & Masuhara, H. (2013). *Materials and methods in ELT: A teacher's guide* (3rd ed.). Wiley-Blackwell.

McNamara, T. (2000). *Language testing*. Oxford University Press.

Mishan, F. (2015). *Materials development for TESOL*. Edinburgh University Press.

Nation, I. S. P. (2001). *Learning vocabulary in another language*. Cambridge University Press.

Nunan, D. (2004). *Task-based language teaching*. Cambridge University Press.

O'Malley, J. M., & Pierce, L. V. (1996). *Authentic assessment for English language learners: Practical approaches for teachers*. Addison-Wesley.

Pallant, J. (2020). *SPSS survival manual: A step by step guide to data analysis using IBM SPSS* (7th ed.). Routledge.

Sivaperegasam, S. T. R., & Aziz, N. A. A. (2025). Undergraduates' perceptions of using YouTube in improving vocabulary learning. In S. Hosseini, B. Beitzel, M. Köhler, & F. Sanjakdar (Eds.), *Technological advancements and innovations in future of education* (pp. 323–337). Springer Nature Singapore. [https://doi.org/10.1007/978-981-97-4931-7\\_26](https://doi.org/10.1007/978-981-97-4931-7_26)

Tomlinson, B. (2017). *Developing materials for language teaching*. Bloomsbury Publishing.

Topping, K. J. (2021). Face-to-face peer assessment in teacher education/training: A review. *Education Review USA*. <https://discovery.dundee.ac.uk/en/publications/face-to-face-peer-assessment-in-teacher-education-training-a-review>

Topping, K. J., Gehringer, E., Khosravi, H., Gudipati, S., Jadhav, K., & Susarla, S. (2025). Enhancing peer assessment with artificial intelligence. *International Journal of Educational Technology in Higher Education*, 22(1), 3. <https://doi.org/10.1186/s41239-024-00501-1>

Underhill, N. (1987). *Testing spoken language: A handbook of oral testing techniques*. Cambridge University Press.

Vygotsky, L. S. (1978). *Mind in society: The development of higher psychological processes*. Harvard University Press.

Willis, J. (1996). *A framework for task-based learning*. Longman.

Yahya, M. Y. (2019). *Improving speaking performance and L2 motivation through task-based language teaching on Malaysian undergraduate students* [Doctoral dissertation, University of Reading]. <https://doi.org/10.48683/1926.00089016>