

Matrix: Jurnal Manajemen Teknologi dan Informatika
Volume 14 Issue 2 Year 2024 Pages 66-73

DOI: http://dx.doi.org/10.31940/matrix.v14i2.66-73
URL: http://ojs2.pnb.ac.id/index.php/matrix

65

Laravel framework and native PHP: Comparison in the creation
of rest API

Yuri Ariyanto 1, Mochamad Farhan Fitrahtur Rachmad 2 *, Dwi Puspitasari 3

1,2,3Department Information Technology, Politeknik Negeri Malang, Indonesia

*Corresponding Author: farhanfitrahtur@gmail.com

Abstract: As technology evolves, the need for data communication grows. One technology facilitating this com-

munication between applications and databases is the REST API, widely used by companies to provide access to

their data and services. REST APIs can be developed using PHP, known as PHP Native. However, PHP Native faces

performance issues and a monotonous, repetitive code structure, making maintenance and scalability challeng-

ing. Consequently, developers have created PHP frameworks like Laravel. This research compares the Laravel

framework with PHP Native in REST API development, evaluating aspects such as processing speed, code effi-

ciency, URL routing structure, and architectural models. The analysis reveals four key points: REST API processing

speed, code efficiency, URL routing structure, and project architectural models. In terms of processing speed,

PHP Native is slightly superior to Laravel, with speeds of 18.3 ms compared to 344.52 ms, due to additional pro-

cesses in Laravel like routes, controllers, and models. For code efficiency, Laravel excels due to its ORM feature,

unlike PHP Native, which requires manual SQL query writing. In URL routing, Laravel is superior with a structured

routing feature, whereas PHP Native requires process file inclusion in route calls. Lastly, Laravel’s architectural

model, which implements MVC, is superior to PHP Native, which lacks a standardized architectural model, leading

developers to create their own.

Keywords: Code Efficiency, Laravel Framework, MVC Architecture, PHP Native, Rest API

History Article: Submitted 8 May 2024| Revised 3 June 2024 | Accepted 30 July 2024

How to Cite: Y. Ariyanti, M. F. F. Rachmad, and D. Puspitasari, “Laravel framework and native PHP: Comparison in
the creation of rest API,” Matrix: Jurnal Manajemen Teknologi dan Informatika, pp. 66-73, 2024,
doi.org/10.31940/matrix.v14i2. 66-73.

Introduction
As technology develops, the need for data communication is also necessary. The REST API

is one technology that allows data to be shared between databases and apps. Resources and

activities that can be performed on them make up a REST API. A web browser or client-side

JavaScript code running in a web browser can be used to call the REST API's operations [1]. REST
APIs are also used by many companies to allow others to access their data and services [2]. In

creating a REST API, you can use the PHP programming language or it can be called PHP Native.
PHP Native is a programming language or instructions that are created without the intervention

of other developers in the process. However, native PHP has performance problems so it is nec-

essary to create a better and faster REST API [3], then the code structure is still monotonous and
repetitive which makes application maintenance and scalability sometimes difficult due to the

unorganized structure [4], because of this some developers have started developing PHP frame-
works called frameworks. An integrated collection of software elements, including objects, clas-

ses, and components, that work together to create a reusable architecture for a group of con-
nected apps is called a framework. More specifically, frameworks improve program extensibility,

flexibility, and portability by separating software application-dependent components from soft-

ware application- and platform-independent parts [5].
Currently, there are many PHP programming language frameworks available, such as Co-

deIgniter Yii and Laravel. PHP is a programming language based on open source that is free to
download. Until now, the latest version of PHP available is version 7.0.8, which can be down-

Journal of Manajemen Teknologi dan Informatika

66

loaded from the official PHP website [6]. The majority of modern web servers have a PHP pro-

cessor, and most operating systems offer a standalone interpreter [7]. Many web programmers

such as HTML/CSS choose PHP as the programming language used [8].

The research uses the Laravel framework for analysis. Laravel serves as a PHP-based web
platform for developing high-end web applications with meaningful and elegant syntax. Laravel

was created by Taylor Otwell in July 2011 and published more than five years after Codeigniter.

It includes a robust toolset and an application architecture. It also discusses numerous aspects
of technologies including the ASP.NET, CodeIgniter, Ruby on Rails, and several others [9]. The

Laravel framework is an open-source software with a copyright and is distributed with licensing
terms designed to ensure the source code will always be available [10]. Using Laravel can create

information systems more quickly, besides that, the features in Laravel can be easy to use [11].

As previously explained regarding the advantages and disadvantages of each PHP pro-

gramming language, both the Laravel framework and PHP Native, the research carried out com-
pared the Laravel framework with native PHP. This research aims to test the two PHP program-

ming languages to obtain the advantages and disadvantages of each in REST API development
such as REST API processing speed, program code efficiency, URL structure, and project archi-

tectural model used in the project.

Methodology
This research methodology explains the flow of comparative analysis stages of the Laravel

framework with native PHP in creating a REST API. The research method is shown in Figure 1.

Figure 1. Research Methodology

Stage 1: Develop REST API
During this stage, the REST API is built with the Laravel framework and native PHP. The built

REST API includes creating, reading, updating, and deleting operations on employee data. The
detailed processes are as follows:

Create: Develop the process to add data to the database.
Read: Develop the process to retrieve data from the database.

Update: The process of updating data in the database is being developed.

Delete: Develop the process to delete data from the database.

Stage 2: Testing
In this stage, testing is performed on the previously developed REST API to ensure there are no

bugs or errors in any of the processes. Testing is the procedure of confirming and validating that

a software or app program complies with the business and technical requirements that guide its
design and development, functions as expected, and identifies critical errors or deficiencies in the

application that must be corrected based on severity.

Stage 3: Analysis Testing

In this stage, an analysis is conducted on the REST API created using both the Laravel framework
and native PHP. The analysis includes:

Processing Speed of the REST API: Comparing the speed at which each platform executes API
requests.

Code Efficiency: Evaluating the efficiency and cleanliness of the code written on each platform.
URL Routing Structure: Comparing the URL routing structures used by Laravel and native PHP.

Project Architectural Model: Assessing the architectural models used on both platforms' projects.

Journal of Manajemen Teknologi dan Informatika

67

Results and Discussions
Results

The results obtained from several stages of the research method, namely developing REST

API, testing, and analysis are comparisons of the Laravel and native PHP frameworks such as
REST API processing speed, program code efficiency, URL routing structure, and project archi-

tectural model used in the project.

Develop REST API

In developing the REST API, the REST API allows you to create, read, update, and delete
processes on employee data. For development using the Laravel framework and native PHP, see

Figure 2 and Figure 3.

Figure 2. Creating a REST API using PHP Native

Figure 2 shows the steps involved in using PHP Native to create a REST API. This method
uses creating, reading, updating, and deleting actions for employee data manually by developing

PHP scripts. Setting up a database connection, creating queries, and processing query results are

just a few of the manual SQL code authoring chores involved in these CRUD procedures. A slower
development process and a higher chance of errors can result from the repeated code structure

and the requirement for manual handling at every stage.

Figure 3. Creating an API that uses REST with the Laravel development platform

Journal of Manajemen Teknologi dan Informatika

68

Figure 3 shows how to develop a REST API using the framework built on Laravel. This

method implements CRUD for employee data through Laravel's built-in features that support

REST API operations well. Laravel uses the Eloquent ORM to manage interactions with the data-
base, and manual writing of SQL code is reduced. REST API development becomes more modular,

maintainable, and scalable thanks to Laravel's features, such as organized routing, middleware,
and MVC (Model View Controller).

Testing
At this stage, testing is carried out on the REST API which has been developed previously,

there are no bugs or errors in each process. Testing was carried out with Postman software,
which is software described on their website as an API platform that can be used to build APIs

and can be used for testing [13]. For REST API testing, refer to Figure 4 and Figure 5.

Figure 4. Testing the REST API in the Laravel framework using postman

Figure 4 shows the process of testing a REST API created with the Laravel framework and
Postman software. Postman sends an HTTP request to a created REST API endpoint and verifies

that the request was answered correctly. Testing is performed on all CRUD (create, read, modify,
and delete) operations on employee data to ensure that each API function functions correctly and

that there are no bugs or errors. With Laravel, REST API testing becomes easier because features

such as routing and controllers are well organized.

Figure 5. Testing REST API on PHP Native using postman

Journal of Manajemen Teknologi dan Informatika

69

Figure 5 shows the REST API testing process developed using PHP Native using Postman

software. As in testing with Laravel, Postman sends HTTP requests to the REST API endpoint and
verifies the response. Testing includes all CRUD operations on employee data to ensure that the

API functions work correctly and that there are no bugs or errors. In the Native PHP approach,
every request and response is handled by a manually written PHP script, so testing helps ensure

that the manual implementation works as expected without errors.

Analysis Testing

At this stage, an analysis of the REST API which has been created using the Laravel frame-
work and native PHP is carried out, shown in Table 1.

Table 1. Analysis REST API

No Analysis PHP Native Laravel Framework

1 Rest API Speed 18.3 ms 344.52 ms

2 Code efficiency in creating

REST APIs

7 processes 1 process

3 URL structure in REST API 3 paths 2 paths

Discussions
Process Speed Analysis Results for REST API

The study was carried out on the rapidity of the REST API activity, totaling five endpoints

for each technology used, namely using the Laravel framework and native PHP, which were pro-
duced in Table 2 and Table 3.

Table 2. REST API processing speed using the Laravel framework

Endpoint API Speed

/api/karyawan (GET) 312 ms

/api/karyawan/create (POST) 499 ms

/api/karyawan/update/{id} (POST) 403 ms

/api/karyawan /{id} (GET) 324 ms

/api/karyawan/delete/{id} (DELETE) 546 ms

Table 3. REST API processing speed using PHP Native

Endpoint API Speed
/karyawan/crud-karyawan-na-
tive/phprestapi.php?function
=get_karyawan (GET)

680 ms

/karyawan/crud-karyawan-na-
tive/phprestapi.php?function
=insert_karyawan (POST)

143 ms

/karyawan/crud-karyawan-na-
tive/phprestapi.php?function
=update_karyawan&id={id} (POST)

126 ms

/karyawan/crud-karyawan-na-
tive/phprestapi.php?function
=get_karyawan_id&id={id} (GET)

12 ms

/karyawan/crud-karyawan-na-
tive/phprestapi.php?function
=delete_karyawan&id={id} (DELETE)

66 ms

Based on the analysis carried out from Table 2 and Table 3, the results obtained are that

Native PHP is superior in speed of processing the REST API than the Laravel framework because

the files for processing the REST API required in native PHP are much faster than the Laravel

Journal of Manajemen Teknologi dan Informatika

70

framework. After all, the Laravel framework has several processes that must be passed, such as

routes, controllers and models.

Results of Program Code Efficiency Analysis

The analysis carried out regarding the efficiency of the program code in communicating
data with the database using the REST API is shown in Figure 6 and Figure 7.

Figure 6. Code for developing a REST API with the Laravel framework

Figure 7. Software code for developing a REST API with PHP Native

Based on the analysis carried out in Figure 6 and Figure 7, it was found that the Laravel
framework in writing program code is more efficient, or called clean code compared to native

PHP. Clean code is code that is readable so that other people can understand the code directly

[14]. Simple to follow code makes other software developers know it better, which leads to im-
proved code maintainability [15]. Furthermore, clean code includes set guidelines and procedures

that will help programmers in writing program code, such as utilizing meaningful names, indent-
ing, minimizing replication, and a lot more [16]. Eloquent ORM is a Laravel component that maps

an object-oriented core model to a database that is relational [17] compared to native PHP which

is required to write SQL query syntax first when you want to create a data communication process
with the database.

REST API Process Speed Analysis Results

The analysis carried out regarding the URL structure is the global address of documents
on the World Wide Web, and it serves as the main means of finding documents on the Internet

[18]. URLs in routing commonly called endpoints are resources used to build REST APIs and

communicate data between client-server [19], the endpoint structure of the Laravel framework
and native PHP is shown in Table 4.

Table 4. REST API URL Structure

Laravel http://localhost:8000/api/karyawan

PHP Native http://localhost/karyawan/crud-karyawan-na-
tive/phprestapi.php?function=get_karyawan

Journal of Manajemen Teknologi dan Informatika

71

Based on the analysis carried out in Table 4, it was found that the Laravel framework's

endpoint URL structure was superior to the endpoint URL structure of native PHP. The Laravel

framework has a routing feature that can manage API endpoints in a structured manner, whereas
in native PHP the route call must be included with the process file.

Project Architectural Model Analysis Results

The analysis carried out regarding the project architectural model in the Laravel framework

and native PHP is shown in Figure 8 and Figure 9.

Figure 8. Project architecture model in PHP Native

Figure 9. Project architectural model in the Laravel framework

Based on the analysis carried out in Figure 8 and Figure 9, it was found that the Laravel

framework in the project architecture model was superior to native PHP. Because the Laravel

framework implements a mode architecture, namely MVC (Model View Controller). MVC is a de-
sign pattern used to develop web applications, as it helps developers to have a clear understand-

ing of all the modules. The MVC architecture separates the model, view, and controller layers
[20]. Meanwhile, native PHP does not apply an architectural model and developers create their

own architectural models.

Conclusion
Based on the results of the analysis carried out, this research compares the Laravel framework

with PHP Native in the development of REST APIs, focusing on processing speed, code efficiency,

URL routing structure, and architectural models. The study identifies four key findings. Firstly,
PHP Native demonstrates superior processing speed with an average of 18.3 ms compared to

Laravel's 344.52 ms. This advantage is due to the additional processes in Laravel, such as routes,
controllers, and models. Secondly, in terms of code efficiency, Laravel excels because of its Object

Relational Mapping (ORM) feature, which simplifies database interactions, whereas PHP Native

requires manual SQL query writing, leading to a more repetitive and monotonous code structure.
Thirdly, Laravel outperforms PHP Native in URL routing structure due to its robust routing features

Journal of Manajemen Teknologi dan Informatika

72

that allow for more organized and intuitive API endpoints. In contrast, PHP Native necessitates

including process files in route calls, making the structure less manageable. Lastly, Laravel's ad-

herence to the MVC architectural model provides a clear separation of concerns, enhancing code
organization and maintainability. PHP Native, lacking a standardized architectural model, often

leads developers to create their own, which can vary in quality. Thus, while PHP Native is faster,
Laravel offers superior code efficiency, URL routing, and architectural structure, making it a more

robust choice for REST API development.

References
[1] V. Surwase, “REST API Modeling Languages -A Developer ’ s Perspective Related papers

REST API Modeling Languages - A Developer ’ s Perspective,” IJSTE - Int. J. Sci. Technol.
Eng., vol. 2, no. 10, pp. 634–637, 2016, [Online]. Available:

https://www.academia.edu/27064725/REST_API_Modeling_Languages_A_Developers_P
erspective?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-

secondOrderCitations&from=cover_page

[2] L. Murphy, T. Alliyu, A. Macvean, M. B. Kery, and B. A. Myers, “Preliminary Analysis of
REST API Style Guidelines,” PLATEAU’17 Work. Eval. Usability Program. Lang. Tools, pp.

1–9, 2017, [Online]. Available: https://codeplanet.io/principles-good-restful-api-
design/%0Ahttp://www.cs.cmu.edu/~NatProg/papers/API-Usability-Styleguides-

PLATEAU2017.pdf
[3] N. Solanki, D. Shah, and A. Shah, “A Survey on different Framework of PHP,” Int. J. Latest

Technol. Eng. Manag. Appl. Sci., vol. VI, no. VI, pp. 155–158, 2017, [Online]. Available:

https://www.ijltemas.in/DigitalLibrary/Vol.6Issue6/155-158.pdf
[4] M. Doroodchi and S. Dastgheib, “A framework for web application development,” Proc.

2008 Int. Conf. Softw. Eng. Res. Pract. SERP 2008, no. March, pp. 311–316, 2008, doi:
10.17148/iarjset.2022.9218.

[5] D. C. Schmidt, A. Gokhale, and B. Natarajan, “Frameworks : Why They Are Important and

How to Apply Them Effectively 1 Introduction Key Characteristics of Frameworks Key
Challenges in Developing and Reusing Frameworks,” Electr. Eng.

[6] Adam Huda Nugraha, “Making A Web-Based Application For Sales Kitchen Bunda Ghina
Using Php And Mysql,” Int. J. Sci. Technol. Manag., vol. 2, no. 5, pp. 1787–1792, 2021,

doi: 10.46729/ijstm.v2i5.351.
[7] N. J. Sebastian, “Comparative study of the Pros and Cons of Programming languages Java

, Scala , C ++ , Haskell , VB . NET , AspectJ , Perl , Ruby & Scheme,” arXiv Prepr.
arXiv1008.3431, 2010.

[8] S. Sotnik, V. Manakov, and V. Lyashenko, “Overview: PHP and MySQL Features for

Creating Modern Web Projects,” Int. J. Acad. Inf. Syst. Res., vol. 7, no. 1, pp. 11–17,
2023, [Online]. Available: www.ijeais.org/ijaisr

[9] M. I. Kausar Bagwan and P. D. Swati Ghule, “A Modern Review on Laravel-PHP

Framework,” IRE Journals, vol. 2, no. 12, pp. 1–3, 2019.
[10] D. Bretthauer, “Open source software: A history,” Inf. Technol. Libr., vol. 21, no. 1, pp.

3–10, 2002.
[11] A. Ramelan, F. Adriyanto, C. H. B. Apribowo, M. H. Ibrahim, M. E. Sulistyo, and K. S. Arief,

“Iot lora-based energy management information system with rad method and laravel

frameworks,” J. Commun. Softw. Syst., vol. 17, no. 4, pp. 366–372, 2021, doi:
10.24138/jcomss-2021-0003.

[12] S. M. . Quadri and S. U. Farooq, “Software Testing – Goals, Principles, and Limitations,”
Int. J. Comput. Appl., vol. 6, no. 9, pp. 7–10, 2010, doi: 10.5120/1343-1448.

[13] J. Ranta, “Testing AWS hosted Restful APIs with Postman,” no. January, 2023.
[14] R. C. Martin, Clean Code. 2016. doi: 10.1007/978-1-4842-1212-7_3.

[15] P. Rachow, S. Schroder, and M. Riebisch, “Missing clean code acceptance and support in

practice - An empirical study,” Proc. - 25th Australas. Softw. Eng. Conf. ASWEC 2018, pp.
131–140, 2018, doi: 10.1109/ASWEC.2018.00026.

[16] B. Latte, S. Henning, and M. Wojcieszak, “Clean code: on the use of practices and tools
to produce maintainable code for long-living software,” CEUR Workshop Proc., vol. 2308,

no. February, pp. 96–99, 2019.

Journal of Manajemen Teknologi dan Informatika

73

[17] H. Halimi and I. Jound, “Comparison of performance between Raw SQL and Eloquent ORM

in Laravel,” Fac. Comput. Blekinge Inst. Technol. Sweden, pp. 1–37, 2016, [Online].

Available: http://www.diva-portal.org/smash/get/diva2:1014983/FULLTEXT02
[18] A. N. S. Charan, Y. H. Chen, and J. L. Chen, “Phishing Websites Detection using Machine

Learning with URL Analysis,” Proc. - 2022 IEEE World Conf. Appl. Intell. Comput. AIC
2022, pp. 808–812, 2022, doi: 10.1109/AIC55036.2022.9848895.

[19] A. Lawi, B. L. E. Panggabean, and T. Yoshida, “Evaluating graphql and rest api services

performance in a massive and intensive accessible information system,” Computers, vol.
10, no. 11, 2021, doi: 10.3390/computers10110138.

[20] S. Singh and J. Iyer, “Comparative study of MVC (model view controller) architecture with
respect to struts framework and PHP,” Int. J. Comput. Sci. Eng., vol. 5, no. 3, pp. 142–

150, 2016.

© 2024 by the author; licensee Matrix: Jurnal Manajemen Teknologi dan Informatika. This article

is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/4.0/).

